
OPENNI MIGRATION GUIDE
OpenNI/NiTE 2 Migration Guide – Transitioning from
OpenNI/NiTE 1.5 to OpenNI/NiTE 2
Document Version 1.1
April 2013
Disclaimer and Proprietary Information Notice
The information contained in this document is subject to change without notice and does not
represent
a commitment by PrimeSense Ltd. PrimeSense Ltd.
and its subsidiaries make no warranty of any kind with regard to this material,
including, but not limited to implied warranties of merchantability
and fitness for a particular purpose whether arising out of law, custom, conduct or otherwise.

While the information contained herein is assumed to be accurate, PrimeSense Ltd. assumes no
responsibility
for any errors or omissions
contained herein, and assumes no liability for special, direct, indirect
or consequential damage, losses, costs, charges, claims, demands, fees or
expenses, of any nature or kind, which are incurred in connection with the
furnishing, performance or use of this material.

This document contains proprietary information, which is protected by U.S. and international
copyright laws.
All rights reserved. No part of this document may be reproduced, photocopied or translated into
another language
without the prior written consent of PrimeSense Ltd.

License Notice
OpenNI is written and distributed under the Apache License, which means that its source code is
freely-distributed and available to the general public.

You may obtain a copy of the License at:http://www.apache.org/licenses/LICENSE-2.0[1]

NiTE is a proprietary software item of PrimeSense and is written and licensed under the NiTE
License terms, which might be amended from time to time. You should have received a copy of
the NiTE License along with NiTE.

The latest version of the NiTE License can be accessed
at:http://www.primesense.com/solutions/nite-middleware/nite-licensing-terms/[2]

Trademarks
PrimeSense, the PrimeSense logo, Natural Interaction, OpenNI, and NiTE are trademarks and
registered trademarks of PrimeSense Ltd. Other brands and their products are trademarks or
registered trademarks of their respective holders and should be noted as such.

1 Introduction
1.1 Scope
This migration guide is targeted at developers using OpenNI versions that came before OpenNI
2, with particular emphasis on those developers using OpenNI1.5.2 who are interested in
transitioning to OpenNI 2. This guide is designed as both an aid to porting existing applications
from the old API to the new API, as well as to enable experienced OpenNI developers to learn
and understand the concepts that have changed in this new API.

This guide provides a general overview to all programming features that have changed.
Included also is a lookup table of all classes and structures in OpenNI 1.5, showing the
equivalent functionality in OpenNI 2.

1.2 Related Documentation
[1] OpenNI 2 Programmer Guide, PrimeSense.

[2] NiTE 2 Programmer Guide, PrimeSense.

1.3 Support
The first line of support for OpenNI/NiTE developers is the OpenNI.org web site. There you will
find a wealth of development resources, including ready-made sample solutions and a large and
lively community of OpenNI/NiTE developers. See:

http://www.OpenNI.org[3]

If you have any questions or require assistance that you have not been able to obtain at
OpenNI.org, please contact PrimeSense customer support at:

Support@primesense.com[4]

2 Overview
2.1 New OpenNI Design Philosophy
OpenNI 2 represents a major change in the underlying design philosophy of OpenNI. A careful
analysis of the previous OpenNI API, version 1.5, revealed that it has many features that are
rarely or never used by the developer community. When designing OpenNI 2, PrimeSense has
endeavored to greatly reduce the complexity of the API. Features have been redesigned around
basic functionality that was of most interest to the developer community. Of especial
importance is that OpenNI 2 vastly simplifies the interface for communicating with depth
sensors.

2.2 Simplified Middleware Interface
The plug-in architecture of the original OpenNI has been removed completely. OpenNI 2 is now
strictly an API for communicating with sources of depth and image information via underlying
drivers. PrimeSense NiTE middleware algorithms for interpreting depth information are now
available as a standalone middleware package on top of OpenNI, complete with their own API.
Previously, the API was through OpenNI only and you included NiTE functionality via plug-ins.

The following high level diagram compares the OpenNI/NiTE 2 architecture with the
OpenNI/NiTE1.5 architecture.

[5]

Figure 2-1: Comparison of OpenNI/NiTE 2 architecture with OpenNI/NiTE1.5

NiTE 2 API is summarized in Chapter ?10, and is described in detail in the NiTE 2 Programmerӳ
Guide.

PrimeSense is not aware of any third party middleware that actually made use of the provided
OpenNI plug-In interfaces. All known third party middleware simply had been built to run on top
of OpenNI. By simplifying the underlying interfaces that middleware developers are actually
using, it is hoped that third party middleware providers will find it easier to implement their
products on OpenNI.

2.3 Simplified Data Types
OpenNI 1.5 had a wide variety of complex data types. For example, depth maps were wrapped
in metadata. This made it more complicated to work with many types of data that, in their raw
form, are simply arrays. OpenNI 2 achieves the following:

Unifies the data representations for IR, RGB, and depth data
Provides access to the underlying array
Eliminates unused or irrelevant metadata
OpenNI 2 allows for the possibility of not needing to double buffer incoming data

OpenNI 2 solves the double buffering problem by performing implicit double buffering. Due to
the way that frames were handled in OpenNI 1.5, the underlying SDK was always forced to
double buffer all data coming in from the sensor. This had implementation issues, complexity
problems and performance problems. The data type simplification in OpenNI 2 allows for the
possibility of not needing to double buffer incoming data. However, if desired it is still possible
to double-buffer. OpenNI 2 allocates one or more user buffers and a work buffer.

2.4 Transition from Data Centric to Device Centric
The overall design of the API can now be described as device centric, rather than data centric.
The concepts of Production Nodes, Production Graphs, Generators, Capabilities, and other such
data centric concepts, have been eliminated in favor of a much simpler model that provides
simple and direct access to the underlying devices and the data they produce. The functionality
provided by OpenNI 2 is generally the same as that provided by OpenNI 1.5.2, but the
complicated metaphors for accessing that functionality are gone.

2.5 Easier to Learn and Understand
It is expected that the new API will be much easier for programmers to learn and begin using.
OpenNI 1.5.2 had nearly one hundred classes, as well as over one hundred supporting data
structures and enumerations. In OpenNI 2, this number has been reduced to roughly a dozen,
with another dozen or so supporting data types. The core functionality of the API can be
understood by learning about just four central classes:

openni::OpenNI
openni::Device
openni::VideoStream
openni::VideoFrameRef

Unfortunately, this redesign has required us to break backward compatibility with OpenNI 1.5.2.
The decision to do this was not made lightly; however, it was deemed necessary in order to
achieve the design goals of the new API.

2.6 Event Driven Depth Access
In OpenNI 1.5 and before, depth was accessed by placing a loop around a blocking function that
provided new frames as they arrive. Until a new frame arrived the thread would be blocked.
OpenNI 2 still has this functionality, but it also provides callback functions for event driven
depth reading. These callback functions are invoked on sensors becoming available (further
sensors can be connected to the host system while OpenNI is running), and on depth becoming
available.

3 Summary of New Classes
openni::OpenNI Provides the entry point and overall context for the library,

and provides access to devices, and to events related to
devices entering and leaving the system.Replaces:
OpenNI 1.5 Context class

openni::Device Provides the connection to a device, for configuring it and
obtaining video streams (implemented as VideoStream
objects).A Device represents either:ޠphysical hardware
devicethat is producing actual streams of data- or ޠ-file
devicethat contains a recording taken from a physical
device.For each device there is one stream each for color,
IR, and depth.Replaces: OpenNI 1.5 Device class, the
Depth, IR, and Image Generator classes, an all production
nodes

openni::VideoStream Provides the means to start data generation, read
individual frames, obtain information about the streams,
and configure the streams.Replaces: OpenNI 1.5
DepthGenerator, IRGenerator, and ImageGenerator as the
direct source of data from the sensor.

openni::VideoFrameRef Encapsulates all data relevant to a single frame of data,
regardless of its type, IR, Image, and Depth data
Replaces: data structures for IR data, image data, and
depth data in OpenNI 1.5

openni::Recorder Captures the output of one or more streams in an ONI file.
openni::PlaybackControl Provides access to specific recording functionality, e.g.,

speed change and looping.
nite::UserTracker Provides all functionality related to scene segmentation,

skeleton tracking, pose detection, and user tracking.
nite::HandTracker Provides all functionality related to hand tracking,

including gesture detection

4 Overall Context – The OpenNI Class
4.1 Introduction
The OpenNI class provides the entry point and overall context for the library. The OpenNI class
also provides access to devices, and to events related to devices entering and leaving the
system. See the OpenNI 2 Programmerӳ Guide for a complete introduction to using the OpenNI
Class.

4.2 Replaces the Context class
The openni::OpenNI class provides the same overall functionality as the Context class did in
OpenNI1.5. The openni::OpenNI class provides a top level area where the overall state of the API
is stored. Any OpenNI 2 based application will start by running the initialization function in this
class.

In OpenNI 1.5, a complex system of Production Nodes, Generators, and Production Trees/Chains
was used to access depth data. In OpenNI 2 this has been simplified to a model where various
hardware sensors are represented by objects of Device class. Devices provide streams of data,
which in turn are composed of sequential FrameRefs (single video frames). The OpenNI class is
responsible for initializing the actual hardware drivers and making physical devices accessible
by Device objects.

Note that openni::OpenNI is implemented as a collection of static functions. Unlike the Context
class in OpenNI 1.5, it does not need to be instantiated. Simply call the initialize() function to
make the API ready to use.

4.3 Device Events (New Functionality)
OpenNI 2 now provides the following device events:

Device added to the system
Device deleted from the system
Device reconfigured

These events are implemented using an OpenNI::Listener class and various callback registration
functions. See the OpenNI 2 Programmerӳ Guide for details. The EventBasedRead sample

provided with OpenNI 2 provides example code showing how to use this functionality.

4.4 Miscellaneous Functionality
The various error types implemented in OpenNI 1.5 via the EnumerationErrors class have been
replaced with simple return codes. Translation of these codes into human readable strings is
handled by openni::OpenNI. This replaces the Xn::EnumerationErrors class from OpenNI 1.5.

OpenNI 1.5 provided a specific xn::Version class and XnVersion structure to deal with API
version information. In OpenNI 2, the OniVersion structure is provided to store the API version.
This information is accessed via a simple call to the openni::OpenNI::Version() function. This
replaces the xn::Version class and the XnVersion structure from OpenNI 1.5.

5 The OpenNI Device Class
5.1 Introduction
In OpenNI 1.5, data was produced by Ԑroduction NodesԮ There was a mechanism whereby
individual Production Nodes could specify dependency on each other, but in principal there was
(for example) no difference between a Depth Generator node that was providing data from a
camera, and a Hands Generator node creating hand points from that same data. The end
application was not supposed to care whether the hand points it was using were generated from
a depth map, or some other data source.

The old approach had a certain symmetry in how data was accessed, but it ignored the
underlying reality that in all real cases the raw data produced by a hardware device is either a
RGB video stream, an IR stream, or a Depth stream. All other data is produced directly from
these streams by middleware.

OpenNI 2 has switched to a metaphor that much more closely mimics the real life situation. In
doing so, we were able to reduce the complexity of interacting with hardware, the data it
produces, and the middleware that acts on that hardware.

The base of the new hierarchy is the Device class. A Device represents either:

physical hardware device that is producing actual streams of dataޠ

– or -

.file device that contains a recording taken from a physical deviceޠ

The Device class is used to connect to a device, configure it, and to obtain video streams
(implemented as VideoStream objects). For each device there is one stream each for Color, IR,
and Depth.

The Device class in OpenNI 2 replaces the Device class in OpenNI 1.5, as well as replacing the
Depth, IR, and Image Generator classes.

Please see the OpenNI 2 Programmerӳ Guide for a complete introduction to using the Device
class.

5.2 Device Specific Capabilities
In OpenNI 1.5, there was a general Capability class that was intended to represent the

capability of a ԇeneratorԠin an abstract sense. Any feature or data source, whether a device or
algorithm or some other data source was supposed to be represented by some sort of capability.
A long list of possible capabilities was defined.

The FrameSync and AlternativeViewPoint mechanisms in OpenNI 1.5 have been replaced by a
simpler system in OpenNI 2. OpenNI 2 uses ‘DepthColorSync’ and ‘ImageRegistration’ to more
closely follow how real devices are actually configured. These represent underlying flags that
are set in firmware or hardware on a device wide basis

The ԁlternative Viewpoint CapabilityԠis now referred to as ԉmage RegistrationԮ

5.3 File Devices
In OpenNI 1.5, the playback of recorded data was handled by an explicit player object and the
use of virtual ԍock NodesԠto produce the data. OpenNI 2 changes this to a system where a
recording is specified in place of a physical device when the device is actually opened. The
caller to the Device:open() function provides a parameter specifying whether it is a sensor
device or a file device. If a recording is specified, after the initial call to the Device::open()
function, a recording is in every way identical to the output from a physical device.

An openni::PlaybackControl class is also defined to control additional capabilities specific to file
devices. The abilities to seek within a recording, loop the recording, and control the playback
speed are all provided.

Recordings are made with the openni::Recorder class. See chapter ?8 for more information on
the Recorder and PlaybackControl classes.

6 The OpenNI VideoStream Class
6.1 Introduction
The VideoStream Class replaces the DepthGenerator, IRGenerator, and ImageGenerator as the
direct source of data from the sensor. It provides the means to start data generation, read
individual frames, obtain information about the streams, and configure the streams. It also
encapsulates the functionality formerly contained in the CroppingCapability, MirrorCapability
classes, and some of the functionality of the GeneralIntCapability class.

6.2 Changes to Access Approach
Since the Generator classes have been eliminated, data is obtained directly from devices. To
create a video stream, simply create a VideoStream object, and call the
openni::VideoStream::create() function, passing in a valid Device object that will supply the data.

Once initialized, there are two options for obtaining data: a polling loop, and event driven
access.

Polling is most similar to the functionality of the WaitXUpdateX() family in OpenNI 1.5. To
perform polling , call the openni::VideoStream::start() function on a properly initialized
VideoStream object. (A properly initialized VideoStream object is where a device has been
opened, a stream has been associated with the device, and the start command has been given.
Then, call the openni::VideoStream::readframe() function. This function will block until a new
frame of data is read.

To access data in an event driven manner, you need to implement a class that extends the

openni::VideoStream::Listener class, and write a callback function to handle each new data
frame. See the OpenNI 2 Programmerӳ Guide for more information.

6.3 Getting Stream Information
The openni::VideoStream::getSensorInfo() function is provided to obtain a SensorInfo object for
an initialized video stream. This object allows enumeration of available video modes supported
by the sensor.

The openni::VideoMode object encapsulates the resolution, frame rate, and pixel format of a
given VideoMode. Openni::VideoStream::getVideoMode() will provide the current VideoMode
setting for a given stream.

Functions are also provided by the VideoStream class that enable you to check resolution, and
obtain minimum and maximum values for a depth stream.

6.4 Configuring Streams
To change the configuration of a stream, use the OpenNI::VideoStream:setVideoMode() function.
A valid VideoMode should first be obtained from the list contained in a SensorInfo object
associated with a VideoStream, and then passed in using setVideoMode().

6.5 Mirroring Data
Instead of a ԍirroring CapabilityԬ mirroring is now simply a flag set at the VideoStream level.
Use the VideoStream::setMirroringEnabled() function to turn it on and off.

6.6 Cropping
Instead of a ԃropping CapabilityԬ cropping is now set at the VideoStream level. This is done
directly with the VideoStream::setCropping() function. The parameters to be passed are no
longer encapsulated in a ԃroppingԠobject as they were in OpenNI 1.5 ֠they are now simply a
collection of 4 integers.

6.7 Other Properties
The ԇeneral IntԠcapabilities have been replaced with simple get and set functions for integer
based sensor settings. Use of these should be rare, however, since all of the commonly used
properties
(i.e., mirroring, cropping, resolution, and others) are encapsulated by other functions rather
than manipulated directly.

.

7 The OpenNI VideoFrameRef Class
7.1 Introduction
In OpenNI 1.5.x, data was stored in a complex hierarchy of classes. There were separate classes
for IR, Image, and Depth data, and a class hierarchy that was several layers deep. All of this
overhead greatly obscured access to data that, at its heart, is simply a two dimensional array of
pixel values.

In OpenNI 2 this complexity has been reduced by using a single ԖideoFrameRefԠclass to
encapsulate all data relevant to a single frame of data, regardless of its type. Metadata has
been reduced to the minimum required to work with the frames.

7.2 Accessing frame data
The VideoFrameRef class includes the VideoFrameRef::getData() function that returns a pointer

directly to the underlying frame data. Use the VideoFrameRef::getSensorType() function to
determine the type of data contained ֠Depth, IR or Color ֠if required.

7.3 Metadata
Functions are provided to access the following metadata properties of a frame of data:

Data size
Type of Sensor used to create data
Timestamp of the frame
Video Mode of the data (resolution and frame rate)
Frame index (a number assigned to each frame sequentially)
Width of frame in pixels
Height of frame in pixels
Cropping settings
Stride of the array containing the data

8 OpenNI Recordings
8.1 Recorder Class
All recordings are now taken by a Recorder class. The basic purpose of the recorder class is to
capture the output of one or more streams in an ONI file. To make a recording, simply give the
openni::Recorder class a list of valid streams that you would like to record from, the name of a
file to record to, and then call the start() function. Once you are finished recording, call the stop()
function.

The resulting ONI file can later be used to create a device that will behave almost exactly as a
physical device would.

8.2 PlaybackControl Class
It is possible to perform certain operations with a recording that cannot be done with a regular
physical device. OpenNI 2 provides functions encapsulated in the PlaybackControl class to
perform these operations. These functions simplify the use of the Device class for physical
devices. A PlaybackControl object is instantiated and attached to a device file, and can then be
used to access specific recording functionality, e.g., speed change and looping.

The functionality provided includes seeking within a recording, determining how many frames a
recording contains, changing playback speed, and looping playback.

9 OpenNI Classes no longer Exposed
9.1 Introduction
Several classes and data structures were provided in OpenNI 1.5 that were not directly related
to the central purpose of the API. These included data structures for handling points, planes,
bounding boxes, etc. They also included miscellaneous structures for abstracting operating
system functionality, as well as various other Ԩelper classesԠnot directly related to reading
depth information. These items have been removed from the API in this revision. In some cases,
they are retained behind the scenes for implementation of the API, in other cases they have
been removed entirely.

OpenNI developers who need any of these OpenNI classes that are no longer exposed, i.e.,
those who wish to extend or change the code of OpenNI itself, can find them in the PSCommon
folder in the OpenNI source code.

10 Functionality Moved to NiTE 2
10.1 Overview
In OpenNI 1.5, a specific set of interfaces was provided for gesture detection, skeleton tracking,
hand point detection, and user detection. Binary middleware plugins could then provide
algorithms to implement these specific interfaces. PrimeSense NiTE middleware was one such
implementation.

It was, however, found that few developers actually used this framework, so in OpenNI 2 the
approach has been completely changed. Any attempt at standardizing the interface between
middleware and applications has been abandoned. As a result, OpenNI 2 includes no interfaces
for higher level middleware.

NiTE is still provided, with all the same functionality. It is now a standalone package, with its
own API. Thus there are now two separate installers, one for OpenNI and one for NiTE. See the
NiTE 2 Programmerӳ Guide for more information.

10.2 Full Body Tracking
10.2.1 Introduction
All functionality related to Scene Segmentation, Skeleton Tracking, Pose Detection, and User
Tracking is now handled by a single User Tracker API ֠UserTrackerFrameRef. Each frame of
User Tracker output is stored in an object of type UserTrackerFrameRef, which contains all
scene segmentation, skeleton, and pose data. Data specific to a given user is stored in an
object of type UserData. UserData is obtainable via accessor functions ֠get() ֠in
UserTrackerFrameRef.

10.2.2 Scene Segmentation
The UserTracker now provides an opened and working device that provides depth data via a call
to nite::UserTracker::create(), and scene segmentation begins immediately. The UserMap class
is used to store user segmentation data.

Step by step instructions on how to do this in code are given in the NiTE 2 Programmerӳ Guide.
Alternatively, see the sample entitled ԓimpleUserTrackerԠfor an easy to follow example of how
to use all of the major User Tracker API functions. Scene segmentation now also includes a floor
plane calculation.

10.2.3 Skeleton Tracking
Skeleton tracking has been incorporated into the User Tracker.
Starting the Skeleton for a given user now requires a single function call:
nite::UserTracker::startSkeletonTracking()

Once tracking has started, skeleton data is available as a nite::Skeleton object, obtained from
UserData by calling nite::UserData::getSkeleton.

The Skeleton class itself simply provides access to a collection of joints. Position and orientation
data for each joint is stored as a nite::SkeletonJoint object, which can be obtained by using
nite::Skeleton::getJoint(). Possible types for SkeletonJoint are enumerated in nite::JointType.
Joint orientation is now stored using the more standard Quaternions, instead of transformation
matrices.

The Skeleton class also provides access to calibration status data via nite::Skeleton::getState().
Possible calibration states, including a few informative error states, are enumerated in
nite::SkeletonState.

10.2.4 Pose Detection
Explicit Pose detection is now available by calling nite::UserTracker::startPoseDetection(). The
list of available poses is enumerated in nite::PoseTypes.

10.3 Hand Tracking
Hand tracking is now performed via the HandTracker API. This API also includes gesture
detection calls.

The HandTracker needs to be given a working device with the nite::HandTracker::create() call,
and then hand tracking can be started by calling nite::HandTracker::startHandTracking(). All
hand points and gestures detected in a given frame are encapsulated in HandTrackerFrameRef
objects. The actual HandPoint data is stored as objects of type HandData, and gestures
recognized are stored as type GestureData.

An enumeration of available gesture types is available in nite::GestureTypes.

Step by step instructions on how to do this in code are given in the NiTE 2 Programmerӳ Guide.
Alternatively, see the sample entitled ԓimpleHandTrackerԼ/strong> for an easy to follow
example of how to use all of the major Hand Tracker API functions.

10.4 Event Driven Programming
Both the User Tracker and Hand Tracker have associated listener class types that can be used
to assign callback functions. Every new frame of data generates an event that calls these
listeners. The UserTracker and HandTracker now completely encapsulate the link between NiTE
and OpenNI (other than the initial function call to create()). It is therefore now possible to write
a completely event driven application with NiTE. There is no need to set up a polling loop to
read sensor data ֠that is all handled behind the scenes. Each frame of output from either the
UserTracker or HandTracker provides a direct link to the depth frame that it was generated from,
easing the process of combining NiTE output with raw depth data.

10.5 Misc
NiTE 2 includes classes for representing points, planes, bounding boxes, quaternions, and arrays.

In NiTE 2, quaternions replace transformation matrices when manipulating skeleton joints.

11 Obsolete Concepts
11.1 Introduction
The architecture changes in OpenNI 2 have caused a number of specific concepts to be no
longer necessary. As a result, there are a number of classes and structures in OpenNI 1.5 that
have no equivalent in OpenNI 2. This chapter discusses each group of items that have been

removed, and the reasons behind these decisions.

11.2 Mock Generators
Mock Generators were used to implement the recording system in OpenNI 1.5 and to implement
third party depth drivers. In OpenNI 2, recordings are created and simulated at the Device level.
There is no longer any need for a special class of items to play back the data.

11.3 Queries
The elimination of Production Nodes and Production Chains has rendered the xn::Query object
obsolete.

11.4 Modules
OpenNI 1.5 provided a large number of classes devoted to implementing its plug-in architecture.
OpenNI plug-ins were referred to as ԭodulesԮ Since this architecture no longer exists, none of
these items are required.

11.5 Licensing Infrastructure
OpenNI 1.5 provided a key-value based licensing infrastructure for middleware developers to
use with their code. Since OpenNI no longer directly supports middleware plug-ins, there is no
reason to leave in the licensing functionality. Middleware developers are of course free to
develop their own licensing mechanisms for use with their standalone middleware packages.
The elimination of a licensing mechanism means that there is no longer any need for the
xn::License class.

11.6 Script Nodes
Script nodes were a little used Production Node type. No equivalent for them has been provided
in OpenNI 2.

11.7 Log Objects
OpenNI 1.5 provided a complex logging mechanism for errors. Since OpenNI 2 simplifies error
reporting the log objects have been rendered unnecessary. Logging status codes in whatever
form the application developer finds convenient should now be very easy to implement in the
application itself.

11.8 Audio
OpenNI 1.5 provided support for a proprietary audio format via OpenNI. The only functionality
provided by this audio system was a simple recording of PCM formatted sounds, with the
expectation that audio would be recorded or analyzed using third party middleware. It was
decided that the much more common USB-UAC (Universal Audio Class) would provide an easier
to use interface for a wider number of tools. For this reason, the OpenNI 1.5 audio streams have
been eliminated in favor of embracing the UAC standard. This prompted the removal of the
following items from the API:

AudioGeneratorޠ

AudioMetaDataޠ

WaveOutputModeޠ

11.9 Abstract Data Types
11.9.1 Introduction
OpenNI 1.5 had an extensive hierarchy of data types. For example, there were three different
types of video frames (Depth, IR, RGB). Each of these types of video had its own Generator class
to create the data, and its own metadata class to hold the data. The various generators had a
MapGenerator ancestor class to abstract functionality common to each, which in turn had a

Generator ancestor, itself derived from a ProductionNode.

The simplification in OpenNI 2 has eliminated most of this hierarchy. OpenNI 2 factors out the
NiTE middleware and now creates separate objects for devices and video streams. This has
eliminated much of the common functionality. Merging the various video types into a single
VideoFrameRef type provided further simplification. The end result is a completely flat class
hierarchy. This has caused the complete elimination of many classes that served only to provide
abstraction.

11.9.2 Capabilities
The concept of a generic ԃapabilityԠhas been eliminated. In its place, various objects have
simple get/set functions to activate appropriate functionality. Mirror and Cropping capabilities
are now found in the VideoStream class. ImageRegistration and FrameSync capabilities are now
managed from the Device class. The ԇeneral IntԠcapabilities have been replaced with get
property and set property functions in either VideoStream or Device, depending on whether the
setting in question affects a single stream or the entire device.

11.9.3 Production Nodes
The attempt at unifying middleware and hardware data sources has been abandoned. This has
made the concept of a Ԑroduction NodeԠno longer necessary. Equivalent functionality to
specific Product Node types has been retained in the VideoStream and Device classes, but the
abstract hierarchy above the specific types is now gone.

11.9.4 Generators
Generators, including the specific types such as MapGenerators, have been eliminated. The
ԭapԠtypes have all been retained as VideoStreams. Audio is now handled via UAC. The abstract
hierarchy that attempted to unify these various types has been eliminated in favor of simply
using VideoStreams for everything with a type code to indicate the data type.

11.9.5 MetaData
The various specific MetaData types (IRMetaData, ImageMetaData, DepthMetaData) are all
handled by the openni::VideoFrameRef class. The hierarchy of abstract types (i.e.,
MapMetaData) has been eliminated.

Appendix A Index of OpenNI 1.5 – 2.0 Equivalents

This appendix provides a list of all classes and structures in OpenNI 1.5, along with a brief
description of where to find the equivalent functionality in OpenNI 2. See the relevant chapters
of this guide, the OpenNI 2 Programmerӳ Guide, or the HTML based SDK reference for
additional details.

The overall structure of the two versions is different enough that a true one-to-one mapping of
functions is not practical. This table is primarily intended to help you find the right area of the
documentation to get the functionality you are looking for. In particular, please do not simply
replace the code in the left column with the code in the right column ֠that will not yield a
functioning program.

The table is listed alphabetically by OpenNI 1.5.2 item name. See the object in the second
column for the equivalent OpenNI 2 functionality. The third column gives the section or chapter
of this document where the relevant concept is discussed.

Table A-1: Index of OpenNI 1.5 – 2 Equivalents

OpenNI 1.5.2 Class/Struct OpenNI 2 Equivalent See
xn::AlternativeViewPointCapability openni::Device:isImageRegistrationSupported(),

openni::Device:getImageRegistrationMode(),
openni::Device:setImageRegistrationMode()

5.2

xn::AntiFlickerCapability openni::Device:getProperty(),
openni::Device:setProperty()

5.2

xn::AudioGenerator Obsolete Concept ֠Audio 11.8
xn::AudioMetaData Obsolete Concept ֠Audio 11.8
xn::Capability Obsolete Concept ֠Abstract Data Types,See

specific classes derived from Capability for their
location in OpenNI 2

11.9.2

xn::Codec
xn::Context openni::OpenNI, openni::OpenNI:initialize() 4.2
xn::CroppingCapability openni::Stream:getCropping(),

openni::Stream:setCropping(),
openni::Stream:resetCropping(),
openni::Stream:isCroppingSupported(),
openni::FrameRef:isCroppingEnabled()

6.6

xn::DepthGenerator openni::VideoStream 6
xn::Device openni::Device 5
xn::DeviceIdentificationCapability openni::Device:getDeviceInfo() 5
xn::EnumerationErrors OniStatus, openni::OpenNI:getExtendedError() 4.4
xn::EnumerationErrors::iterator OniStatus, openni::OpenNI:getExtendedError() 4.4
xn::ErrorStateCapability OniStatus, openni::OpenNI:getExtendedError() 4.4
xn::ExtensionModule Obsolete Concept ֠Modules 11.4
xn::FrameSyncCapability openni::Device:enableDepthColorSync(),

openni::Device:disableDepthColorSync()
5.2

xn::GeneralIntCapability openni::Device:getProperty(),
openni::Device:setProperty(),
openni::VideoStream:getProperty(),
openni::VideoStream:setProperty()

5.2

xn::Generator Obsolete Concept ֠Abstract Data Types,See
specific classes derived from Generator for their
location in OpenNI 2

11.9.4

xn::GestureGenerator nite::HandTracker, nite::GestureData 10.3
xn::HandsGenerator nite::HandTracker, nite::HandData 10.3
xn::HandTouchingFOVEdgeCapability nite::HandData::isTouchingFov() 10.3
xn::ImageGenerator openni::VideoStream 6
xn::ImageMetaData openni::VideoFrameRef 7
xn::IRGenerator openni::VideoStream 6
xn::IRMetaData openni::VideoFrameRef 7
xn::MapGenerator Obsolete Concept ֠Abstract Data Types,All

specific map generator functionality is available in
openni::VideoStream

11.9.4

xn::MapMetaData Obsolete Concept-Abstract Data Types,All specific
MapMetaData functionality is available in
openni::VideoFrameRef

11.9.5

xn::MirrorCapability openni::VideoStream:getMirroringEnabled(),
openni::VideoStream:setMirroringEnabled()

6.5

xn::MockAudioGenerator Obsolete Concept – Mock Nodes 11.2
xn::MockDepthGenerator Obsolete Concept – Mock Nodes 11.2
xn::MockImageGenerator Obsolete Concept – Mock Nodes 11.2
xn::MockIRGenerator Obsolete Concept – Mock Nodes ?11.2
xn::MockRawGenerator Obsolete Concept – Mock Nodes 11.2
xn::Module Obsolete Concept – Modules 11.4
xn::ModuleAlternativeViewPoint Obsolete Concept ֠Modules 11.4
xn::ModuleAntiFlickerInterface Obsolete Concept – Modules 11.4
xn::ModuleAudioGenerator Obsolete Concept – Modules 11.4

OpenNI 1.5.2 Class/Struct OpenNI 2 Equivalent See
xn::ModuleCodec Obsolete Concept – Modules 11.4
xn::ModuleCroppingInterface Obsolete Concept – Modules 11.4
xn::ModuleDepthGenerator Obsolete Concept – Modules 11.4
xn::ModuleDevice Obsolete Concept – Modules 11.4
xn::ModuleDeviceIdentification Obsolete Concept – Modules 11.4
xn::ModuleErrorStateInterface Obsolete Concept – Modules 11.4
xn::ModuleExportedProductionNode Obsolete Concept – Modules 11.4
xn::ModuleExtendedSerializationInterface Obsolete Concept – Modules 11.4
xn::ModuleFrameSyncInterface Obsolete Concept – Modules 11.4
xn::ModuleGeneralIntInterface Obsolete Concept – Modules 11.4
xn::ModuleGenerator Obsolete Concept – Modules 11.4
xn::ModuleGestureGenerator Obsolete Concept – Modules 11.4
xn::ModuleHandsGenerator Obsolete Concept – Modules 11.4
xn::ModuleHandTouchingFOVEdgeInterface Obsolete Concept – Modules 11.4
xn::ModuleImageGenerator Obsolete Concept – Modules 11.4
xn::ModuleIRGenerator Obsolete Concept – Modules 11.4
xn::ModuleLockAwareInterface Obsolete Concept – Modules 11.4
xn::ModuleMapGenerator Obsolete Concept – Modules 11.4
xn::ModuleMirrorInterface Obsolete Concept – Modules 11.4
xn::ModuleNodeNotifications Obsolete Concept – Modules 11.4
xn::ModulePlayer Obsolete Concept ֠Modules 11.4
xn::ModulePoseDetectionInterface Obsolete Concept – Modules 11.4
xn::ModuleProductionNode Obsolete Concept – Modules 11.4
xn::ModuleRecorder Obsolete Concept – Modules 11.4
xn::ModuleSceneAnalyzer Obsolete Concept – Modules 11.4
xn::ModuleScriptNode Obsolete Concept – Modules 11.4
xn::ModuleSkeletonInterface Obsolete Concept – Modules 11.4
xn::ModuleUserGenerator Obsolete Concept – Modules 11.4
xn::ModuleUserPositionInterface Obsolete Concept – Modules 11.4
xn::NodeInfo Obsolete Concept – Abstract Data Types 11.9
xn::NodeInfoList Obsolete Concept – Abstract Data Types 11.9
xn::NodeInfoList::iterator Obsolete Concept – Abstract Data Types 11.9
xn::NodeWrapper Obsolete Concept – Abstract Data Types 11.9
xn::OutputMetaData Obsolete Concept – Abstract Data Types 11.9.5
xn::Player openni::Device:open(“<FILENAME>”),

openni::PlaybackControl
5.3

xn::PoseDetectionCapability nite::UserTracker, nite::PoseData 10.3
xn::ProductionNode Obsolete Concept – Abstract Data Types 11.9.3
xn::Query Obsolete Concept – Query 11.3
xn::Recorder openni::Recorder 8
xn::Resolution openni::VideoMode 6.4
xn::SceneAnalyzer nite::UserTracker 10.2
xn::SceneMetaData nite::UserMap 10.2.2
xn::ScriptNode Obsolete Concept – ScriptNode 11.6
xn::SkeletonCapability nite::UserTracker, nite::Skeleton 10.3
xn::StateChangedCallbackTranslator openni::OpenNI::Listener:onDeviceStateChanged() 4.3
xn::UserGenerator nite::UserTracker 10.2
xn::UserPositionCapability nite::UserData::getCenterOfMass() 10.2
xn::Version openni::OpenNI:getVersion() 4.4
xn:DepthMetaData openni::VideoFrameRef 7
XnArray< T > Essentially unchanged from OpenNI 1.5 N/A
XnAudioMetaData Obsolete Concept – Audio 11.8
XnAutoCSLocker No longer exposed 9.1

OpenNI 1.5.2 Class/Struct OpenNI 2 Equivalent See
XnAutoMutexLocker No longer exposed 9.1
XnBaseNode Obsolete Concept – Abstract Data Types 11.9.3
XnBitSet No longer exposed 9.1
XnBoundingBox3D No longer exposed in OpenNI, nite::BoundingBox 9.1
XnCallback openni::OpenNI::Listener,

openni::Stream::Listener
4.3

XnCropping Data now stored in members of the
OpenNI::VideoStream class

6.6

XnDepthMetaData openni::VideoFrameRef 7
XnDumpWriter No longer exposed 9.1
XnDumpWriterFileHandle No longer exposed 9.1
XnErrorCodeData OniStatus, openni::OpenNI:getExtendedError() 4.4
XnEvent Events are now simply callback function calls from

openni::OpenNI and openni::VideoStream
4.3

XnEventInterface openni::OpenNI::Listener,
openni::Stream::Listener

4.3

XnFieldOfView Data now stored as members of
openni::VideoStream

6.3

XnGeneralBuffer No longer exposed 9.1
XnHash No longer exposed 9.1
XnHash::ConstIterator No longer exposed 9.1
XnHash::ConstIterator No longer exposed 9.1
XnHash::Iterator No longer exposed 9.1
XnImageMetaData openni::VideoFrameRef 7
XnIRMetaData openni::VideoFrameRef 7
XnLicense Obsolete Concept – Licensing 11.6
XnList No longer exposed 9.1
XnList::ConstIterator No longer exposed 9.1
XnList::ConstIterator No longer exposed 9.1
XnList::Iterator No longer exposed 9.1
XnLogEntry Obsolete Concept – Logging 11.7
XnLogger Obsolete Concept – Logging 11.7
XnLogWriter Obsolete Concept – Logging 11.7
XnLogWriterBase Obsolete Concept – Logging 11.7
XnMapMetaData Obsolete Concept – Abstract Data Types 11.9.5
XnMapOutputMode Obsolete Concept – Abstract Data Types 11.9.5
XnMatrix3X3 No longer exposed in OpenNI, nite::Quaternion 9.1,

10.2.3,
10.5

XnModuleAlternativeViewPointInterface Obsolete Concept ֠Modules 11.4
XnModuleAntiFlickerInterface Obsolete Concept – Modules 11.4
XnModuleAudioGeneratorInterface Obsolete Concept – Modules 11.4
XnModuleCodecInterface Obsolete Concept – Modules 11.4
XnModuleCroppingInterface Obsolete Concept – Modules 11.4
XnModuleDepthGeneratorInterface Obsolete Concept – Modules 11.4
XnModuleDeviceIdentificationInterface Obsolete Concept – Modules 11.4
XnModuleDeviceInterface Obsolete Concept – Modules 11.4
XnModuleErrorStateInterface Obsolete Concept – Modules 11.4
XnModuleExportedProductionNodeInterface Obsolete Concept – Modules 11.4
XnModuleExtendedSerializationInterface Obsolete Concept – Modules 11.4
XnModuleFrameSyncInterface Obsolete Concept – Modules 11.4
XnModuleGeneralIntInterface Obsolete Concept – Modules 11.4
XnModuleGeneratorInterface Obsolete Concept – Modules 11.4
XnModuleGestureGeneratorInterface Obsolete Concept – Modules 11.4

OpenNI 1.5.2 Class/Struct OpenNI 2 Equivalent See
XnModuleHandsGeneratorInterface Obsolete Concept – Modules 11.4
XnModuleHandTouchingFOVEdgeCapabilityInterface Obsolete Concept – Modules 11.4
XnModuleImageGeneratorInterface Obsolete Concept – Modules 11.4
XnModuleIRGeneratorInterface Obsolete Concept – Modules 11.4
XnModuleLockAwareInterface Obsolete Concept – Modules 11.4
XnModuleMapGeneratorInterface Obsolete Concept – Modules 11.4
XnModuleMirrorInterface Obsolete Concept – Modules 11.4
XnModulePlayerInterface Obsolete Concept – Modules 11.4
XnModulePoseDetectionCapabilityInterface Obsolete Concept – Modules 11.4
XnModuleProductionNodeInterface Obsolete Concept – Modules 11.4
XnModuleRecorderInterface Obsolete Concept – Modules 11.4
XnModuleSceneAnalyzerInterface Obsolete Concept – Modules 11.4
XnModuleScriptNodeInterface Obsolete Concept – Modules 11.4
XnModuleSkeletonCapabilityInterface Obsolete Concept – Modules 11.4
XnModuleUserGeneratorInterface Obsolete Concept – Modules 11.4
XnModuleUserPositionCapabilityInterface Obsolete Concept – Modules 11.4
XnNode Obsolete Concept – Abstract Data Types 11.9.3
XnNodeAllocator Obsolete Concept – Abstract Data Types 11.9.3
XnNodeInfoListIterator Obsolete Concept – Abstract Data Types 11.9.3
XnNodeNotifications Obsolete Concept – Abstract Data Types 11.9.3
XnOpenNIModuleInterface Obsolete Concept – Modules 11.4
XnOSEvent No longer exposed 9.1
xnOSInfo No longer exposed 9.1
XnOutputMetaData Obsolete Concept – Abstract Data Types 11.9.5
XnPlane3D No longer exposed in OpenNI, nite::Plane 9.1
XnPlayerInputStreamInterface Obsolete Concept – Abstract Data Types 11.9
XnProductionNodeDescription Obsolete Concept – Abstract Data Types 11.9.3
XnQueue No longer exposed 9.1
XnRecorderOutputStreamInterface Obsolete Concept – Abstract Data Types 11.9
XnRGB24Pixel OniRGB888Pixel N/A
XnSceneMetaData nite::UserMap 10.2.2
XnSkeletonJointOrientation nite::SkeletonJoint::getOrientation() 10.2.3
XnSkeletonJointPosition nite::SkeletonJoint::getPosition() 10.2.3
XnSkeletonJointTransformation Orientations are now stored in NiTE as

quaternions
10.2.3

XnStack No longer exposed 9.1
XnStringsKeyManager No longer exposed 9.1
XnStringsKeyTranslator No longer exposed 9.1
XnSupportedPixelFormats openni::SensorInfo:getSupportedVideoModes() 6.3
XnThreadSafeQueue No longer exposed 9.1
XnUInt32XYPair No longer exposed 9.1
XnUSBConfigDescriptorHolder This data type is now simply stored as a string N/A
XnUSBDeviceDescriptorHolder This data type is now simply stored as a string N/A
XnUSBInterfaceDescriptorHolder This data type is now simply stored as a string N/A
XnUSBStringDescriptor This data type is now simply stored as a string N/A
XnVector3D No longer exposed 9.1
XnVersion OniVersion, openni::OpenNI:getVersion() 4.4
XnWaveOutputMode Obsolete Concept – Audio 11.8
XnYUV422DoublePixel OniYUV422DoublePixel, other than name change,

this structure is basically unchanged
N/A

Endnotes:

http://www.apache.org/licenses/LICENSE-2.0: http://www.apache.org/licenses/LICENSE-2.0
http://www.primesense.com/solutions/nite-middleware/nite-licensing-terms/:
http://www.primesense.com/solutions/nite-middleware/nite-licensing-terms/
http://www.OpenNI.org: http://www.openni.org/
Support@primesense.com: mailto:support@primesense.com
[Image]:
http://www.openni.org/openni-migration-guide/comparison-betw-openni-1-5-and-2-0-docver1-1-
3/

