
OPENNI PROGRAMMER’S GUIDE
Overview
Purpose
The OpenNI 2.0 API provides access to PrimeSense compatible depth sensors. It allows an
application to initialize a sensor and receive depth, RGB, and IR video streams from the device.
It provides a single unified interface to sensors and .ONI recordings created with depth sensors.

OpenNI also provides a uniform interface that third party middleware developers can use to
interact with depth sensors. Applications are then able to make use of both the third party
middleware, as well as underlying basic depth and video data provided directly by OpenNI.

High Level View of the API
Getting access to the depth streams requires the use of four main classes. This list is intended
as a brief introduction. Each of these classes will be discussed in detail in its own chapter:

1) openni::OpenNI – Provides a single static entry point to the API. Also provides access to
devices, device related events, version and error information. Required to enable you to
connect to a Device.

2) openni::Device – Provides an interface to a single sensor device connected to the
system. Requires OpenNI to be initialized before it can be created. Devices provide access to
Streams.

3) openni::VideoStream – Abstracts a single video stream. Obtained from a specific
Device. Required to obtain VideoFrameRefs.

4) openni::VideoFrameRef – Abstracts a single video from and related meta-data.
Obtained from a specific Stream.

In addition to these main classes, various supporting classes and structures are provided for
holding specific types of data. A Recorder class for storing OpenNI video streams to files is
provided. There are also Listener Classes provided for the events that OpenNI and Stream
classes can generate.

Video streams can be read using one of two basic methods: Loop Based and Event Based. Both
of these methods will be detailed later in this guide.

The OpenNI Class
Introduction
The first of the main classes that makes up OpenNI 2.0 is openni::OpenNI. This class provides a
static entry point to the API. It is used to provide access to all devices in the system. It also
makes available various device connection and disconnection events, as well as providing
functions that allow for polling based access of all data streams.

Basic Access To Devices
The OpenNI class provides a static entry point to the API in the form of the OpenNI::initialize()
function. This function initializes all available sensor drivers and scans the system for available
devices. Any application using OpenNI should call this function prior to any other use of the API.

Once the initialize function has been run, it will become possible to create Device objects and
use them to communicate with actual sensor hardware. The function
OpenNI::enumerateDevices() returns a list of all available devices connected to the system.

When an application is ready to exit, the OpenNI::shutdown() function should be called to
shutdown all drivers and properly clean up.

Basic Access to Video Streams
A system of polling for stream access can be implemented by using the
OpenNI::waitForAnyStream() function. This function takes a list of streams as one of its
arguments. When called, it blocks until any of the streams in the list have new data available.
It then returns a status code and indicates which stream has data available. This function can
be used to implement a polling loop around new data being available.

Event Driven Access to Devices
The OpenNI class provides a framework for accessing devices in an event driven manner.
OpenNI defines three events: onDeviceConnected, onDeviceDisconnected, and
onDeviceStateChanged. An onDeviceConnected event is generated whenever a new device is
connected and available through OpenNI. An onDeviceDisconnected event is generated when a
device is removed from the system. An onDeviceStateChanged event is called whenever any
settings of the Device are changed.

Listener classes can be added or removed from the list of event handlers by using the following
methods:

OpenNI::addDeviceDisconnectedListener()
OpenNI::addDeviceDisconnectedListener()
OpenNI::addDeviceStateChangedListener()
OpenNI::removeDeviceConnectedListener()
OpenNI::removeDeviceDisconnectedListener()
OpenNI::removeDeviceStateChangedListener()

All three events provide a pointer to a openNI::DeviceInfo object. This object can be used to get
details and identification of the device referred to by the event. Additionally, the
onDeviceStateChanged event provides a pointer to a DeviceState object that can be used to see
the new state of the device.

Event driven access to the actual video streams is provided by the VideoStream class – see the
chapter on that class for more information.

Error Information
Many functions in the SDK have a return type of “Status”. When an error occurs, status will
contain a code that can be logged or displayed to a user. OpenNI::getExtendedError() method
returns additional, human-readable information about the error.

Version Information
Version information for the API is provided by OpenNI::getVersion(). This function returns the
version of the API that the application is presently interacting with.

Devices
Introduction
The openni::Device class provides an interface to a single physical hardware device (via a

driver). It can also provide an interface to a simulated hardware device via a recorded ONI file
taken from a physical device.

The basic purpose of Devices is to provide Streams. The Device object is used to connect to
and configure the underlying file or hardware device, and then Streams are created from that
device.

Prerequisites for Connecting to a Device
Before the Device class can be connected to a hardware device, the device must be physically
connected to a PC, and a driver must be installed. Drivers for the PrimeSense sensors are
installed along with OpenNI 2.0.

If connecting to an ONI file instead of a physical device, it is only required that the ONI recording
be available on the system running the application, and that the application have read access to
this file.

It is also required that the openni::OpenNI:initialize() function has been called prior to
connecting to any devices. This will initialize the drivers and make the API aware of any devices
connected (see section 3.2).

Basic Operation
Constructor
The constructor for the Device class takes no arguments, and does not connect the Device to a
physical hardware device. It simply creates the object in memory so that other functions can be
called.

Device:open()
The Device:open() function is what actually connects a the Device to a physical hardware
device. The open() function takes a single argument – the URI of a device. This function returns
a status code indicating either success or what error occurred.

The simplest use of this function is to call it with the constant openni::ANY_DEVICE as the URI.
Using this constant will cause the system to connect to any active hardware device. This is
most useful when it can be safely assumed that there is exactly one active hardware device
attached to the system.

If multiple sensors are attached to the system, then you should first call
OpenNI::enumerateDevices() to obtain a list of all active devices. Then, find the desired device
in the list, and obtain its URI by calling DeviceInfo:getUri(). Use the output from this function as
the calling parameter for Device:open() in order to open that specific device.

If opening a file rather than a physical device, then the argument should be the path to the .ONI
file.

Device:close()
The close() function properly shuts down the hardware device. As a best practice, any device
that is opened should be closed. This will leave the driver and hardware device in a known
state so that future applications will not have difficulty connecting to them.

Device:isValid()
The isValid() function can be used to determine whether there is currently an active device
connected to this Device object.

Obtaining Information on a Device

It is possible to obtain basic information about a device. Information available includes name,
vendor string, uri, and USB VID/PID. The openni::DeviceInfo class is provided to contain all of
this information. It provides getter functions for each available information item. To obtain the
DeviceInfo for a given device, call the Device:getDeviceInfo() function.

A device may be comprised of a number of sensors. For example, a PrimeSense device has an
IR sensor, a color sensor and a depth sensor. Streams can be opened on any existing sensor.

It is possible to get a list of sensors available from a device. The Device:hasSensor() function
can be used to query whether a device provides a specific sensor. Possible sensors include:

SENSOR_IR – The IR video sensor

SENSOR_COLOR – The RGB-Color video sensor

SENSOR_DEPTH – The depth video sensor

If the desired sensor is available, then the Device:getSensorInfo() function can be used to get
specific info on it. This will be encapsulated by a SensorInfo object. SensorInfo provides getters
for the sensor type, and an array that contains all available video modes. Individual video
modes are encapsulated by the VideoMode class.

Specific Device Capabilities
Registration
Some devices produce both depth and image streams. Usually, these streams are produced
using two different physical cameras. Since the cameras are located at separate points in
space, they will provide images of the same scene from two different angles. This results in
objects in one image stream appearing to have a different apparent position from the same
object in the other image stream.

If the geometric relationship between the two cameras and the distance to the object in
question are both known, then it is possible to mathematically transform one of the images to
make it appear to have been taken from the same vantage point as the other. This enables one
to superimpose one image over the other, for example to provide an RGB color from a color
image to each pixel in a depth image. This process is referred to as Registration.

Some devices include the ability to perform these calculations in hardware, along with the
required calibration data to do so. If this capability is present, then there will be a flag in
hardware to turn it on and off.

The Device object provides the isImageRegistrationSupported() function to test whether the
specific device it is connected to supports Registration. If Registration is supported, then
getImageRegistrationMode() can be used to query the current status of this feature, and
setImageRegistrationMode() can be used to set it to a specific value. The
openni::ImageRegistrationMode enumeration provides the possible values that can be passed to
these get and set functions:

IMAGE_REGISTRATION_OFF – Hardware registration features are disabled

IMAGE_REGISTRATION_DEPTH_TO_IMAGE – The depth image is transformed to have the same
apparent vantage point as the RGB image.

Note that since the two sensors will have areas where their field of view does not overlap, there

will generally be an area to one side of the Depthmap that is not shown as a result of enabling
this feature. It is also common to see “shadows” or “holes” in the Depthmap where there are
sudden edges in the depth geometry. This is caused by the fact that objects are “shifted” by a
different amount depending on their distance from the camera. This may result in a faraway
object being moved more than an adjacent nearby object, leaving a space between them where
no depth information is available.

FrameSync
When both a depth and color video stream is available, it is possible that the individual frames
from each stream will not be exactly synchronized with each other. This can show up as a slight
difference in frame rate, or a slight phase difference in frame arrival time, even when frame
rate is exactly matched.

Some devices provide the capability to perform hardware synchronization on the two frames, in
order to obtain frames that are separated from each other in time by some guaranteed
maximum. Usually, this maximum is much less than the time between frames. This capability
is referred to as FrameSync.

To enable or disable this ability, call the setDepthColorSyncEnabled().

General Capabilities
Some devices have capabilities and settings other than FrameSync and Registration. OpenNI
2.0 provides a means to activate these with the setProperty() and getProperty() functions. The
setProperty function takes a numerical ID for the property, and a data value to set that ID to.
The getProperty() function returns the current value stored at a specific ID.

Consult your sensor vendor for any specific additional properties that it supports, and the
required numerical ID and valid data values for those properties.

File Devices
Overview
OpenNI 2.0 provides the ability to record the output of a device to a file (called an ONI file, and
usually having the file extension .oni). This recording will optionally include all streams
produced by the device, along with all of the settings that were enabled at the time the
recording was made. Once a recording has been made (See chapter 7), that recording can be
opened as a “file device” and interacted with just as if a physical device were attached to the
system.

Except for slight differences in how they are initialized (passing a URI vs a file name to the
Device:open() function) recordings are indistinguishable from physical sensors to application
code.

This functionality can be very useful for algorithm debugging. Live scenes are generally difficult
or impossible to reproduce exactly. By using the recording functionality, the exact input can be
fed to more than one algorithm, enabling debugging and performance comparisons. The
functionality can also be useful for automated testing of applications, and for situations where
insufficient cameras are available for all developers on a project – developers without a camera
can develop and test code on a file recording. Finally, recordings can facilitate technical
support by allowing a remote support representative to view the exact output from a customer
camera, making it easier to spot problems.

The PlaybackControl class is used to access any file specific functionality for file devices. See
the chapter devoted to that class for more information. To facilitate writing general purpose

code that deals with both files and physical devices, the Device::isFile() function has been
provided. This allows applications to determine whether a Device was created from a file before
attempting to use a PlaybackControl.

The PlaybackControl Class
Introduction
There are some actions that are only possible when dealing with a recorded file. These actions
include seeking within a stream, determining how long a recording is, looping the recording, and
changing playback speed. This functionality has been encapsulated by the PlaybackControl
class.

Initializing
To use the PlaybackControl class, you must first instantiate and initialize a Device class from a
file. Once a valid file Device has been created, you can acquire its internal PlaybackControl
object by calling Device::getPlaybackControl(). The Device::IsFile() function can be used to
determine whether a given Device was created from a file, if this is unknown.

Seek
Two functions are provided to allow seeking within a recording.

The PlaybackControl::seek() function takes a VideoStream pointer and a frameID as inputs. It
then sets playback of the recording to frame indicated. If there are multiple streams in a
recording, all streams will be set to the same point in time as the stream indicated – a specific
stream is required as input only to provide context for the frameID.

The PlaybackControl::getNumberOfFrames() function can be used to determine how long a
recording is. This is useful primarily to determine valid targets for the Seek function. It takes a
stream pointer as input, and returns the number of frames in the recording for that specific
stream. Note that it is possible for different streams in a recording to have differing number of
frames, since frames will not always by synchronized.

Playback Speed
It is possible to vary the playback speed of a recording. This is useful when testing an algorithm
with a large input data set, since it allows results to be obtained faster.

The PlaybackControl::setSpeed() function takes a floating point value as input. The input value
is interpreted as a multiple of the speed the recording was made at. For example, if a recording
was of a 30fps stream, and a value of 2.0 was passed to setSpeed(), then the stream would play
back at 60fps. If a value of 0.5 was passed, the stream would play back at 15fps.

Setting the speed to 0.0 will cause the stream to run as fast as the host system is able to run.
Setting the speed to -1 will cause the stream to be read manually – which is to say that the
stream will be paused until a frame is read by the applications. Placing the recording in manual
mode, and then reading in a tight loop, will accomplish something very similar to setting the
speed to 0.0. Setting speed to 0.0 is therefore primarily useful for programs that used event
driven data reading.

The PlaybackControl::getSpeed() function will provide the most recent value that was set with
setSpeed() (ie, the active speed value).

Playback Looping

A physical sensor will continue to provide data indefinitely, but a recording has only a finite
number of frames. This can be problematic when attempting to use a recording to simulate a
physical sensor, since application code designed to deal with physical sensors will not generally
be designed to deal with the end of the recording.

To overcome this difficulty, a playback looping function has been provided. The
PlaybackControl::setRepeatEnabled() function can be used to turn looping on and off. If a value
of TRUE is passed to setRepeatEnabled, then the recording will start over at the first frame after
the last frame is read. If a value of FALSE is passed, then no more frames will be generated
after the recording is over.

PlaybackControl::getRepeatEnabled() can be used to query the current repeat value.

The VideoStream Class
Introduction
The VideoStream class encapsulates all data streams created by the Device class. It allows you
to request that specific data flows be started, stopped, and configured. It also allows for
configuration of parameters that exist at the stream (as opposed to Device) level.

Basic Functionality of VideoStreams
Creating and Initializing the VideoStream class
Calling the default constructor of the VideoStream class will create an empty, uninitialized
VideoStream object. Before it can be used, this object must be initialized with the
VideoStream::create() function. The create() function requires a valid initialized device. Once
created, you should call the VideoStream::start() function to start the flow of data. A
VideoStream::stop() function is provided to stop the flow of data.

Polling based data reading
Once a VideoStream has been created, data can be read from it directly with the
VideoStream::readFrame() function. If new data is available, this function will provide access to
the most recent VideoFrameRef generated by the VideoStream. If no new frame is ready yet,
then this function will block until a new frame is ready.

Note that if reading from a recording with looping turned off, this function will block forever
once the last frame has been reached.

Event based data reading
It is also possible to read the data from a VideoStream in an event driven manner. To do this,
you must create a class that extends the VideoStream::Listener class. This class should
implement a function called onNewFrame(). Once you create this class, instantiate it, and pass
it to the VideoStream::addListener() function. When a new frame is available, the onNewFrame()
function of your listener will be called. You will still be required to call readFrame().

Obtaining Information about VideoStreams
SensorInfo & VideoMode
The SensorInfo and VideoMode classes are provided to keep track of information about
VideoStreams. A VideoMode encapsulates the frame rate, resolution, and pixel format of a
VideoStream. SensorInfo contains the type of sensor used to produce a VideoStream, and a list
of VideoMode objects that each contains a valid set of parameters for the stream. By iterating
through the list of VideoMode objects, it is possible to determine all possible modes for the
sensor producing a given VideoStream.

Use the VideoStream::getSensorInfo to obtain the sensor info object that corresponds to a given
VideoStream.

Field of View
Functions are provided to determine the field of view of the sensor used to create a
VideoStream. Use the getHorizontalFieldOfView() and getVerticalFieldOfView() functions to
determine the field of view used to create a stream. This value will be reported in radians.

Min and Max Pixel Values
For depth streams it, it is often useful to know the minimum and maximum possible values that
a pixel can contain. Use the getMinPixelValue() and getMaxPixelValue() functions to obtain this
information.

Configuring VideoStreams
Video Modes
It is possible to set the frame rate, resolution, and pixel type of a given stream. To do this, use
the setVideoMode() function. Before doing this, you will first need to obtain the SensorInfo for
the VideoStream to be configured, so that you can choose a valid VideoMode.

Cropping
If a given sensor supports cropping, the VideoStream provides a means to control it. Use the
VideoStream::isCroppingSupported() to determine whether a sensor supports cropping.

If it does support cropping, use setCropping() to enable cropping and set desired cropping
settings. The resetCropping() function can be used to turn cropping off again. The
getCropping() function can be used to obtain the current cropping settings.

Mirroring
Mirroring causes the VideoStream to appear as if seen in a mirror – ie, the image is transformed
by reflecting all pixels across the vertical axis. To enable or disable mirroring, use the
VideoStream::setMirroringEnabled() function. Pass in TRUE to turn on mirroring, and FALSE to
turn it off. The current mirroring setting can be queried by using the getMirroringEnabled()
function.

General Properties
At the firmware level, most sensor settings are stored as address/value pairs. These can be
manipulated directly with the setProperty and getProperty functions. These functions are used
internally by the SDK to implement cropping, mirroring, etc. They will not need to be used
frequently by application code, since most of the useful properties are wrapped by friendlier
functions.

The VideoFrameRef Class
Introduction
The VideoFrameRef class encapsulates all data related to a single frame read from a
VideoStream. It is the basic class that VideoStream uses to return each new frame. It provides
access to the underlying array that contains the frame data, as well as any metadata that is
required to work with the frame.

VideoFrameRef objects are obtained from calling VideoStream::readFrame().

VideoFrameRef data can come from IR cameras, RGB cameras, or depth cameras. If required,
the getSensorType() function can be used to determine which type of sensor generated the
frame. This will return a SensorType, an enumeration that provides a code for each possible

sensor type.

Accessing Frame Data
The VideoFrameRef includes the VideoFrameRef::getData() function that returns a pointer
directly to the underlying frame data. This will be a void pointer, so it must be cast using the
data type of the individual pixels in order to be properly indexed.

Metadata
Several items of metadata are provided with each frame to facilitate working with the dataitself.

Cropping data
The VideoFrameRef knows the cropping settings for the VideoStream used to create it. It is
possible to determine the origin of the cropping window, size of the cropping window, and
whether cropping was enabled when the frame was generated. The functions to do this include:
getCropOriginX(), getCropOriginY(), getCroppingEnabled(). The cropping window size will be
equal to the size of the frame if cropping is enabled, so the method for determining that is the
same as the method for determining frame resolution.

TimeStamp
Each frame of data will be stamped with a timestamp. This value is measured in microseconds
from some arbitrary zero value. The difference in time stamps between two frames from the
same stream will be the time difference between those frames. All streams in the same device
are guaranteed to use the same zero, so differences between time stamps can also be used to
compare frames from different streams.

The current implementation of OpenNI 2.0 is to start the timestamp zero as the time of the first
frame of the stream. This is not guaranteed to be the case in every implementation, however,
so application code should only use timestamp deltas. The timestamp value itself should not be
used as any kind of absolute time reference.

Frame Indexes
In addition to timestamps, frames are provided sequential Frame Index numbers. This is useful
for determining sequence of frames, and for knowing how many frames came between two
frames. If two streams have been synchronized by using the Device::setColorDepthSync()
function, then the frame indexes of corresponding frames is guaranteed to match.

If synchronization is not enabled, then frame indexes are NOT guaranteed to match. In this
case, it is more useful to use the timestamp to determine where frames are in relation to each
other.

Video Modes
VideoFrameRef::getVideoMode() can be used to determine the video mode settings of the
sensor that created the frame at the time of its creation. This information includes the pixel
format and resolution of the image, as well as the frame rate the camera was running at when
the image was taken.

Data Size
The getDataSize() function can be used to determine the size of all the data contained in the
image array. This is useful if you need to allocate a buffer to store frame, or a number of
frames. Note that this is the data size for entire array. Use VideoMode::getPixelFormat() to
determine the size of individual array elements.

Image Resolution
For convenience, getHeight() and getWidth() functions are provided to easily determine the

resolution of the frame. This data could also be obtained with
VideoFrameRef::getVideoMode().getResolutionX() and
VideoFrameRef::getVideoMode().getResolutionY(), but these values are required very frequently,
so the above calls would be inefficient and awkward.

Data Validity
The VideoFrameRef::isValid() function is provided to determine whether a VideoFrameRef
contains actual valid data. This function will return false if called between the initial
construction of the VideoFrameRef and the first time data is loaded from an actual VideoStream.

Sensor Type
The type of sensor used to generate the frame data can be determined by calling
getSensorType(). This will return a SensorType – an enumeration that assigns constants to each
possible sensor type. Possible values include:

SENSOR_IR – for an image taken with an IR camera

SENSOR_COLOR – for an image taken with an RGB camera

SENSOR_DEPTH – for an image taken with a depth sensor

Array Stride
The stride of the array containing the frame can be obtained with the getStrideInBytes()
function. This provides the size of each row of the data array in bytes. This is primarily useful
to allow two dimensional indexing of the image data.

The Recorder Class
Introduction
A simple Recorder class is provided to facilitate recording VideoStream data to an ONI file. ONI
files are OpenNI’s standard for recording the output of depth sensors. They can contain one or
more streams of information (e.g. a depth and color stream recorded simultaneously by a
PrimeSense sensor). They also contain the settings of the Device used to create that
information. It is possible to instantiate Device objects from this file and then interact with
them as if they were physical devices.

Setting up a recorder
There are three basic steps to setting up a recorder.

First, you must construct the recorder by calling its default constructor. This is no different than
instantiating any other class.

Second, you must call the Recorder::create() function on that Recorder, and provide a file name
to record to. Any errors in creating and writing to the file will be returned as status codes from
the create function.

Third, you must provide the data streams to be recorded. This is done using Recorder::attach()
function to attach the recorder to a given VideoStream. If you would like to record more than
one stream, simply call attach multiple times, once for each VideoStream to be added.

Recording
After video streams are attached, recording will not commence until the Recorder::start()
function is called. Once start() has been called, every frame generated by the streams recorded
will be written to the ONI file. When you have finished recording, call the Recorder::stop()

function to end the recording. Calling the Recorder::destroy() function will free any memory
used by the recorder and ensure that files are written to disk properly.

Playback
As the OpenNI file standard, ONI files can be played back by many OpenNI applications and
utilities. To connect to them directly from application code, open a file device and read from it
(see the Device chapter). Additional playback controls can be accessed by using the
PlaybackControl object from your file device (see the PlaybackControl chapter).

Support Classes
Introduction
In addition to the main classes of OpenNI, a number of support classes are provided that serve
mainly to encapsulate data. They are mentioned in their appropriate chapters, but are also
described briefly here. See the appropriate chapters in this guide, or the entries for these
classes in the API reference for more details.

Sensor Configuration Classes
DeviceInfo
This class records device wide configuration settings, including the device name, URI, USB
VID/PID descriptors and vendor name.

SensorInfo
This class stores the configuration settings that apply to a given sensor. A “sensor” in this
context is either an IR camera, RGB camera, or depth camera. A device may contain several
sensors.

VideoMode
This class stores the resolution, framerate, and pixel format of a frame. It is used by
VideoStream to set and track settings, by VideoFrameRef to track these settings, and by
SensorInfo to provide a list of all valid modes.

CameraSettings
Stores the settings for an RGB camera. Allows you to Enable/Disable auto white balance and
auto exposure.

Data Storage Classes / Structures
Version
Stores a software version. Used by OpenNI to report its version. Can also be used by any
applications that wish to adopt the same versioning scheme, or to specify required OpenNI
versions.

RGB888Pixel
This structure stores a single color pixel value.

Array
OpenNI provides a simple Array class that wraps the primitive arrays containing image data.

Coordinate Conversion
A coordinate conversion class is provided to allow conversion between Real World and Depth
coordinates. See the API reference for a detailed description.

